Tag Archives: Dallas

EMF Testing Indoor Air Quality Radon Gas Testing: 214.912.4691 Dallas – Houston – Austin – Fort Worth

Powerline Home Safe Distance Cell Phone RF Surveys

Cell Tower Site on High Voltage Power Line near homes in residential area in North Dallas – EMF Testing and Surveys

EMF Testing / Magnetic Field Survey & Safe Distance Measurement Services

EMF testing for those concerned about living near powerlines and feeders is available for commercial clients and limited residential with reports that range from verbal to complete reports with photo documentation and graphics. We also provide consultation on viable strategies and products for EMF protection. We travel all over Texas and cities in adjacent states including Dallas, Houston, Fort Worth, Austin, San Antonio and Oklahoma City.

RF (Radio Frequency) Scans and Evaluations – Maximum Permissible Exposure (MPE)

We test RF energy for frequency and amplitude in order to find sources and evaluate safety with respect to FCC regulatory, compliance and precautionary guidelines, and to determine potential interference issues between wireless routers, cell phone repeaters / boosters, Radio Frequency Identification (RFID) systems, and wireless microphone / audio / video data systems.

Magnetic / Electric / RF & EMF Shielding Consultations including proper grounding

If you have an issue with electromagnetic energy that is either a safety issue or causes equipment interference, we are fully qualified to assess, troubleshoot and make sound recommendations to fix or mitigate the situation.

Radon Gas Measurements & Surveys (Short / Long Term Testing)

With a background in radon and radiation safety, we are capable of evaluating and reporting on radon gas levels, how they compare with EPA standards and whether a mitigation solution is called for.

EMF Testing for Electrical Wiring Issues Indicated by Excessive EMF Fields

Whether you believe in the safety hazards of EMF or not, the most common source of high EMF fields inside the home is improper wiring which fails to conform to current NEC code. ScanTech can detect and direct repairs on electrical wiring that manifests as an abnormal magnetic field.

Preliminary Construction Surveys / Property Transfer Phase I Environmental Site Due Diligence Survey testing regarding Indoor Air Quality (IAQ) – EMF Consultation for Safety and potential EMI – Radon Testing for Multi-Family Dwellings and Commercial Buildings.

We are often called out to site before a structure or complex is erected in order to survey and communicate any possible issues and the potential impact of nearby power lines, substations, transformers, cell towers and other EMF/RF generating sources. We also make construction recommendations for minimizing electromagnetic field emissions for safety and electromagnetic Interference concerns with sensitive manufacturing and research equipment.

Indoor air quality testing for VOC levels regarding Certificate of Occupancy permits according to City of Dallas Green Ordinances. Also known as the 804.2 Post-Construction, Pre-Occupancy Baseline IAQ Testing which is a 4 hour test for 500 uG / m^3 or less of VOCs.

Magnetized & Radiation Contaminated Metals, Stone and Imported Products

ScanTech has been in the radiation survey business for over 10 years and is routinely called upon to investigate cases of suspected radioactive contamination and magnetized ferrous metals which can cause unusual issues. Our instrumentation includes several Geiger counters with capable of detecting Alpha and Beta particle emissions, X-Rays and includes specialized Gamma radiation scintillation detectors.

Weak Cell Phone Signal Reception Issues & Wireless LAN Problems / RFID Interference

Weak Cellular Phone (including 2G / 3G / 4G LTE) & Wireless Strength Measurements with consulting for correction / mitigation in commercial buildings, residential and multifamily properties with poor coverage, slow data rates and dropped calls for all major telecom and communications carriers including Sprint, T-Mobile, Verizon, AT&T for smartphones, tablets, iPads, etc. Radio Frequency Identification system troubleshooting and interference issues investigated. We also perform FCC RF Compliance surveys for MPE (Maximum Permissible Exposure) including rooftop antenna installations.

Implanted Biomedical Device EMF / EMI Measurement Compliance Surveys and Testing for Patient Safety

Medical Device Compliance Testing (Pacemakers, Implantable Defibrillators, ICD’s etc. – Medtronics, St. Jude Medical, Boston Scientific, Mortara) for individuals returning to work or home after implant surgery to identify potential hazards from AC/DC Magnetic and Electric Fields, Microwaves, RF and general EMI (Electromagnetic Interference).

Hospital Infant Anti-Abduction Security Systems

ScanTech troubleshoots RFID integrated systems designed to protect neonatal care facilities that employ systems such as Hugs by Stanley Healthcare and MyChild by McRoberts Security Technologies.

Electrostatic Discharge (ESD) Testing, Consulting And Evaluation for Commercial, Industrial and Biomedical Companies / Applications / Clients

We have the equipment to determine the sheet resistance of ESD flooring material and if anti-static grounding is working as well as the ability to identify troublesome materials and processes which can cause equipment malfunction and electric shock / fire / explosion hazards. We can also measure relative air ion counts, humidity and the direct DC static voltage on surfaces (positive or negative) up to 30,000 V to determine which objects in the environment may be damaging your static sensitive equipment.

Indoor Air Quality (IAQ) Surveys to Determine Relative Air Cleanliness PM2.5 / PM10 / HEPA Filtration Efficiency / Formaldehyde / VOC / CO2 (Carbon Dioxide) / O2 Oxygen % Concentration & Contamination for Commercial Building and Industrial / Occupational Atmosphere Evaluations with expertise in Nanotoxicology and Medical Environmental Illness Testing

We have time based datalogging air laser analysis available to characterize particulate matter such as small particle contaminants (down to 0.5 microns such as bacteria) and large particle counts (2.5 um and larger) for potential pollen, dust and mold detection which are also known as RSPs. (Respirable Suspended Particles) We can also check for formaldehyde concentrations and VOCs (Volatile Organic Compounds) levels from outgassing materials such as pressed wood flooring or glues and other binders.

Elevated CO2 (carbon dioxide) levels are indicative of Sick Building Syndrome and poor air exchange characteristics in a structure.

New nanomaterials on the market have raised concerns about the potential toxic effects of nanoparticles (such as carbon nanotubes, titanium dioxide, silver NPs, etc.) in particulate, aerosol, aqueous forms and their in-vivo effects.

Commercial, industrial, occupational health and limited residential applications.


OSHA Sound / Noise Level Surveys for Safety Audits

Sound (Commercial) & Industrial Safety field surveys and measurement including for acoustic OSHA sound and STC (Sound Transmission Class) noise levels / ordinances / testing (meeting ANSI & IEC Type 2 standards) to determine compliance and evaluate potential issues with excessive or disruptive noise.

Photometric Glare & Illumination (Lighting Level) Surveys for Safety, OSHA and City Ordinance Compliance

Photometric mapping to identify poor / insufficient / excessive illumination, security camera glare, ATM lighting security assessments, ADA lighting requirements / compliance, and privacy. Many cities have enacted ordinances which limit the amount of light emanating at the property line at night in foot candles. (fc) We can also measure lighting flicker rates which can cause headaches and other performance issues as well as evaluate possible disruption of circadian rhythms which lead to insomnia and lack of restful REM sleep.

Metallurgical Analysis & Consulting

Materials analysis for ferrous / non-ferrous metals / alloys. Tools and tool steel quality evaluations for carbon content. Also magnetic / RF / electric shielding capability, corrosion resistance, heat resistance, degree of temper, quench methods, elasticity, weathering, and electrical quality consulting. Metamaterial composite research for nanotechnology, biomedical, and exotic applications. (graphene, nanoparticles, carbon nanotubes, nanodiamond, etc.) Radioactivity testing for scrap metal or other suspected products.

Formaldehyde: Indoor Air Quality Pollutant and Testing


Formaldehyde Testing Dallas – Fort Worth

ScanTech offers selective testing of indoor formaldehyde testing in both residential and commercial buildings in the Dallas – Ft. Worth region.


Formaldehyde (Chemical formula CH2O and also known as Methanal) is a colorless, water soluble gas at room temperature with a pungent, irritating odor at less than 1 part per million. (1 ppm – and detectable as low as 0.83 ppm) It is an inexpensive chemical with excellent bonding properties produced in high volume throughout the world. A major use is in the fabrication of urea-formaldehyde (UF) resins used primarily as adhesives when making plywood, particleboard and fiberboard. In the 1970’s it was a component of UF foam insulation in sidewalls until it was banned in 1982 by the U.S. Consumer Product Safety Commission because they found levels as high as 4 ppm. (but the ban was later overturned)

Due to it’s very low boiling point of -19 Celsius, formaldehyde is technically a VVOC (Very Volatile Organic Compound) and has very strong chemical and photo-chemical reactivity. It is commercially available as formalin which contains 38% formaldehyde and 6% – 15 % methanol.

Many common household cleaning agents contain formaldehyde and other sources include cigarette smoke and the combustion byproducts of gas / wood stoves and unvented space heaters such as kerosene heaters. It can also be found in paper products such as facial tissues, paper towels and grocery bags.

In general, emission or outgassing rates of formaldehyde increase with temperature, humidity, wood moisture content and decreased formaldehyde in the air. (due to passive diffusion) Generally, some remediation can be found by decreasing humidity and temperature, sealing materials with vinyl wallpaper or non-permeable paint and increasing ventilation. (air exchange rates)

Plywood is composed of several thin sheets of wood glued together with UF copolymeric resin which originally had a high HCHO to urea ratio of 1.5 to 1 to ensure adequate chemical cross-linking of all primary and secondary amino groups. Because the excess HCHO outgasses significantly and subsequently caused health complaints, this ratio was reduced to 1.05 to 1. Particleboard (compressed wood shavings mixed with UF resins at high temperatures) can emit formaldehyde continuously for comparatively long times; from several months to several years. Medium density fiberboard (MDF) was found to be the highest emitter of formaldehyde. Elevated levels are more likely to be found in newer homes with pressed wood materials such as flooring lumber mixed with the UF resin.

UF wood adhesives have excellent bonding performance, but are somewhat chemically unstable and release monomeric formaldehyde due to hydrolysis of the methyol end groups and sometimes the methylene bridges themselves. This means that hydrolytic decomposition and outgassing of HCHO is dependent on moisture levels, so UF-bonded wood products are primarily for indoor use where humidity levels are typically controlled.

Emissions do tend to decrease with time as the materials out-gas, age and cure. It is also used in the production of urea-formaldehyde foam insulation. (UFFI)

While there are several other sources of formaldehyde such as wood and forest fires, cigarette smoke, motor vehicle combustion, and decomposition of methane by sunlight and oxygen, etc. indoor levels are generally higher than outdoor levels. (10 – 20 parts per billion or 0.010 ppm – 0.020 ppm but may reach levels of 50 ppb in areas with significant photochemistry / smog )

Formaldehyde Molecule

Formaldehyde Molecule

Formaldehyde is also produced in the human body in small amounts as it is a metabolic byproduct of drinking alcohol (ethanol) among other chemical pathways. But the amount is relatively small and rapidly broken down into formic acid.

Individual sensitivity to formaldehyde varies, but from 10 – 20 % of the population appears to be highly sensitive to relatively low concentrations. This may be a result of TVOC (Total Volatile Organic Compound) synergy with other pollutants. The principle symptoms experienced are irritation of the eyes, nose, throat, dry facial skin and asthma like symptoms. (difficulty breathing, constriction of the bronchial tubes) Higher concentrations may even lead to headaches, fatigue, insomnia, nausea, unnatural thirst, menstrual irregularities, epistaxis, (nosebleed) coughing, chest / abdominal pain, and rapid heartbeat. (tachycardia)

Allergic dermatitis may occur from skin contact. There are also neurological-like symptoms in some, (including depression) with the chance of potential sensitization and even upper respiratory system cancers. There is some controversy about the cancer causing / carcinogenic effects with some evidence showing that risk only substantially increases at very high exposure levels such as in occupations which deal directly with formaldehyde such as embalmers and anatomists. But formaldehyde has been shown to be genotoxic in cell cultures which causes damage through DNA cross-linking, single strand breaks and chromosome aberrations which indicate that HCHO is mutagenic as well.

Regardless in testing, levels as low as 0.25 ppm (which is below the detectable odor threshold) significant eye and throat discomfort increases in frequency. Chronic bronchitis and asthma are more prevalent in children in homes with HCHO levels in the 0.06 – 0.12 ppm with a 22% decrement between the two values.

Why A Professional Digital EMF Meter Should Be Used For a Survey

In my previous post, I commented on a recent phenomena this past year in which a number of customers who had purchased an EMF meter online or elsewhere to do a survey on a prospective property contacted me after finding what appeared to be anomalously high readings and wanted a second opinion.

Every time it was a Trifield 100XE which is easily recognizable with the yellow label, brick-like construction and familiar needle movement which distinguishes it as an analog meter versus the digital EMF versions. The variations in accuracy varied from moderate to extreme when compared with my 3-axis professional grade meter and I began to wonder what was going on.

I recently contacted the manufacturer of the Trifields (AlphaLab Inc.) and one of their electrical engineers cleared up the mystery as to why the readings seemed to vary so wildly. The 100XEs are typically sold as frequency weighted which means that even slightly higher frequency magnetic fields will add even more to the indicated reading than a meter with a “flatter” frequency response. Also, they measure from 40 Hz – 100 KHz which is a VERY broad band for an AC gaussmeter used in a EMF survey for testing the influence of power lines. Typically, for measuring 60 Hz and any relevant power harmonics, an EMF meter that measures in the range of 30 Hz – 3 KHz is a broad enough range and even 30 Hz – 300 Hz will cover 60 Hz plus the 5th harmonic. The strength of the harmonics gets progressively weaker as frequency increases.

60 Hz Power Line Harmonics

60 Hz Power Line Harmonics

In other words, you may have a 3 milliGauss magnetic field at 60 Hz, but a weaker magnetic field at 120 Hz will weight the reading even more strongly and register as 6 milliGauss when in fact it is only 3 mG.  (from an excerpt on the company website) So the standard Trifield 100XE weights the “harmonics” (multiples of 60 Hz such as 120 Hz, 180 Hz, etc.) differently than a flat frequency EMF meter. Ordinarily, any instrument that is frequency weighted has an attendant chart which tells you how much more weight at different frequencies is measured than over the non-weighted frequency point of the meter.

Below is an example of this sort of chart for the Natural EM Meter (blue label) which is very different from the 100XE model. (This was taken from the vendor website – I know the word “frequency” is misspelled)

EMF Meter Frequency Magnetic Field

Natural EM Meter (not 100XE) Frequency Weighting Chart

A little confusing?

Based on my experience, I can interpret the chart, but what I wanted was the chart for the 100XE model Trifield and I could not find it on the manufacturer’s website. This is what initiated the call to the vendor. When I spoke with an electrical engineer, she explained that the 100XE is not particularly accurate (rated as +/- 20% according to the specs on their website) and is not recommended as a reference for any type of serious EMF survey.

Furthermore she went on to explain that even the manufacturer has NO SUCH chart for the 100XE model so you really don’t know what you are reading and how much is due to the 60 Hz magnetic field that you are interested in and how much is distorted or misrepresented by the high frequency harmonics.

And to further dispel another myth, the Trifield is named for the fact that it measures 3 types (tri) of fields: magnetic, electric and radio frequency, NOT because it is a 3-axis meter in every mode as the RF (radio frequency) measurement is only in SINGLE or 1-axis and will alter greatly depending on the orientation of the meter with respect to the RF source.

But I am not disparaging the company at all (they make some excellent equipment for certain applications and their website is very informative) and the 100XE has some viable uses, but it seems to be more towards something more subjective like the paranormal field rather than what a serious EMF consultant would choose for an official EMF testing survey. I DO like the needle movement as it does help you to track slow or fast fluctuations so I do keep a Trifield with me, but the difference is that I know under what circumstances it can be used and also when I would not use it as an absolute for helping a client decide on a property decision because of the proximity of power lines.

Radon Gas Testing in Dallas / Fort Worth and Texas: More Critical For Home Safety Than You Think

Radon Gas Home Inspections in Dallas Texas    Radon Gas A Home Danger in Dallas

20,000+ Lung Cancer Deaths Annually in the United States

I had another radon gas inspection job in Garland recently and a remark by one of the interested parties got me to thinking. This was relayed by a third party, but I believe the statement was something along the lines of: “Texas homes do not have a radon problem” which I know to be patently false as I have found homes that tested beyond the EPA action limit of 4 picoCuries/liter including MINE. (I have measured 4.9 – 8.0 pCi/L in the Lake Highlands area which is equal to a pack of cigarettes a day) I have also personally been to several residences that had radon mitigation systems in place, and when they were turned off, the levels went back into the danger zone.

So how do myths and misinformation like this get perpetuated? Radon is a more common issue in other parts of the United States and tends to be more detectable in homes with basements, (as radon is heavier than air) but it is common enough in the North Texas region to be worth checking as a part of indoor air quality testing in Dallas and Fort Worth.

The number of homes in the Dallas, Tarrant, Collin and Denton counties exceed the EPA action limit 5 – 10 % of the time which IS statistically significant; up to 1 out of 10 homes. Furthermore if you add in the number of homes which are marginal (2.0 – 3.9 picoCuries/Liter) as radon gas concentrations vary throughout the day, year, etc. then the number of potentially affected homes in North Texas is closer to 16 – 24 %.

Also, the World Health Organization (WHO) recommends a lower limit than the EPA with the mitigation safety limit set at 2.7 pCi/L versus the higher limit of 4.0 pCi/L by the Environmental Protection Agency. And there is NO SAFE LIMIT of radon gas, any amount is bad, but you can’t get away from it entirely as even outdoor levels are typically 0.3 pCi/L and average indoor is 1.1 – 1.3 pCi/L.

So how dangerous is radon gas? Here is a quick risk comparison by the EPA:

Radon Gas Risk Statistics

Radon Gas Risk Statistics

This graph shows only 15,000 deaths annually, (the lower number is because the stats are derived from 1986 data quoted by Environmental Science Technology Vol 24 pp. 774 – 1990)  but a more recent EPA report (2014) shows closer to an estimated 20,000+ lung cancer deaths annually due to radon – 2nd only to smoking in direct cause – which is actually higher than the fatalities caused by drunk driving in which a great deal of energy has been focused on in recent years.

The problem with radon gas is that it is invisible, silent, and much harder to track than the erratic, weaving driving patterns of an inebriated driver. Couple this with a mythologies like: “Texas homes don’t have radon” or “You need to have a basement for radon to be an issue” and this becomes a significantly overlooked risk and safety factor that is relatively easy to test for and not necessarily that expensive to correct.

How does radon gas do it’s damage? By the emission of inhaled alpha particles that get into the lungs and whose ionizing radiation damages cell DNA. This mechanism works by attacking DNA molecules within the cells to form free radical ions, or changes the molecules themselves into excited molecules that can form biochemical pathways to cancer.

Radon Gas Inhaled Lung Damage Alpha Radiation

Radon Lung Damage Alpha Radiation

So even if your home has no basement (very few residences in Texas do) then why be concerned? Because the gas can still seep in through cracks in the foundation or gaps in a pier and beam construction. (you don’t need a basement to have a radon issue)

Radon Gas Home Inspection in Dallas / Ft. Worth to find potentially unsafe levels of radioactivity due to these various sources of entry

Radon Gas Home Inspection in Dallas / Ft. Worth to find potentially unsafe levels of radioactivity due to these various sources of entry

The solution is to first retest to make sure that the radon levels are consistently high enough to warrant attention and if so, proper ventilation is designed and installed by a professional radon mitigator, and then the residence retested to make sure that the system is working. Incidentally, ScanTech does no mitigation as we consider it a potential conflict of interest.

But for a prospective homeowner who is interested in a property, it is important to get the radon checked as soon as possible once you are inside the option period. The reason why is because of the time delays in deploying the kits, waiting the 48 – 96 hours for the kits to develop, transit time to the lab and the radon lab processing / reporting time. This means a dead minimum of 4 days under IDEAL circumstances with rush fees and hand trucking the kits in to the lab. Otherwise, it can take up to over a week which can easily exceed the standard 10 day option period.

ScanTech does have the ability to check the radon levels with a special digital tester that can get results much more quickly (in as little as 1 – 2 days after deployment) with the same level of accuracy as the activated charcoal radon test kits described above and it is less expensive when comparing a return trip to retrieve the device and interpret the results versus a return trip for the charcoal kits.

The charcoal kit route is more feasible if the testing is not as time sensitive and/or the client is willing to either mail or hand carry the kits into the radon testing lab itself located in Dallas County.


RADON FAQ PAGE for Dallas / Fort Worth & Surrounding Counties



Counties & Cities Served by ScanTech Technical Consulting

Service Cities for EMF – Indoor Air Quality Testing Smart Meter – RF (Radio Frequency) inspection services include: Plano, Highland Park, University Park, Park Cities, Arlington, Fort Worth, Grapevine, Frisco, Denton, McKinney, Allen, Lewisville, Irving, Mesquite, Bedford, Euless, Richardson, Coppell, Grand Prairie, Garland, Addison, Farmers Branch, Rockwall, Carrollton, Parker, Rowlett, Lucas, Fairview, Park Cities, Keller, Roanoke, The Colony, Highland Village, Lake Dallas, Corinth, Prosper, Austin, Houston, Round Rock, Spring, The Woodlands, Bastrop, Duncanville, Lancaster, Rowlett, Royse City, Trophy Club, Southlake and Hurst. Counties served include Dallas, Collin, Denton, Tarrant, Travis, Harris and Rockwall County.

ScanTech EMF & Radon Service Area

ScanTech Dallas – Fort Worth EMF, Indoor Air Quality & Radon Testing Service Areas


Dirty Electricity – Is it really “Electropollution” or a Real Threat to Health and Safety? The Dirtier Truth

Comparison of a "Clean" Powerline Signal (top) with one that has EMI or High Frequency Noise (bottom)

Comparison of a “Clean” Powerline Signal (top) with one that has EMI or High Frequency Noise (bottom)

“Dirty electricity” is a rather unscientific term used loosely to describe a signal waveform that has extraneous noise components riding on top of it – typically of higher frequencies and/or a transient random nature.

It is more accurate to describe it as a noisy signal or more specifically as 120 Volt 60 Hz AC with high frequency components. Incidentally, ScanTech Consulting has the capability to evaluate the amount of high frequency noise on a power line in the ranges of 10 KHz – 10 MHz in order to diagnose possible EMI and equipment interference issues. (see picture below)

The controversy is whether or not this phenomena has any measurable impact on human health and safety. Please notice that the use of the terms “dirty” and “electropollution”  have a negative connotation and will tend to immediately bias any reader. Also, the term “dirty electricity” and “electropollution” are not the same. Dirty electricity is any electromagnetic waveform that has unwanted and / or noticeable harmonics and regular or intermittent transients in either the voltage and / or the current component. Electropollution is another relatively unscientific term used by certain EMF consultants / specialists to describe potentially any and all electromagnetic waves of artificial origin, so dirty electricity is only a small subset of EMFs that could be included in the meaning of electropollution.

Bear in mind that there are a number of natural sources of electromagnetic noise such as the Schumann resonances, (spectral peaks in the Earth’s natural ELF field) and radio atmospheric signals which are known as “whistlers” and “sferics” (or also spelled “spherics”) which are produced by global lightning strikes that interact with the ionosphere and Earth’s magnetosphere.

Now before you think that I am completely dismissing the topic out of hand, I can tell you as an electrical engineering graduate that extraneous noise usually is a real problem, but it is normally far more so to equipment (particularly sensitive electronics) directly powered by it rather than to human health. I do have equipment designed to track this down, but this applies more to the commercial arena where (for example) anomalous equipment operation can be caused by a nearby defective (or poorly filtered) LED bulb or an arcing motor in some other part of the building.

Most power supplies are designed to filter out and/or minimize the potential damage that these noise spikes and transients can do before they reach the vulnerable logic components of your computer or charging cell phone. In addition, surge suppressors and UPS (uninterruptible power supplies) are an inline solution to prevent some of the larger transients such as those from a nearby lightning strike from doing something unpleasant such as zapping the motherboard of your PC.

Actual Scientific Measurement of High Frequency Electrical Noise on an AC Powerline

Actual Scientific Measurement of High Frequency Electrical Noise on an AC Powerline

They are also designed to filter out noise that may corrupt data such as on an Internet LAN cable or in critical medical and scientific equipment such as an EKG monitor or scanning electron microscope. But on occasion due to ground loops or incompatible equipment grouping, even the best power supplies can be thwarted if the data/signal lines themselves have corrupted information and / or spurious noise. In this case, you are looking for what is known as S/N or the signal to noise ratio.

So what about the effects to human beings? Does the electric noise on your 60 Hz AC mains actually cause any health problems?

I find it unlikely for several reasons. For one, the overall amplitude of the noise is typically much lower than that of the 120 V AC already on the lines – usually by an one to two orders of magnitude. (at least 10 – 100 times less) Then assuming you are not directly connected to the line (which would be a far more dangerous and immediate problem than any alleged long term health effects) you have to consider the electric near field that is present near any energized line with voltage.

The electric field “couples” or induces voltages in the human body with very poor energy transfer because the very high dielectric constant of water present in the body shields the internal tissues, cells and organs. The resulting induced internal voltages and current in the body from external fields are reduced by an order of 1,000,000 times less.

So even with an external electric field of 1000 Volts / per meter (V/m) the induced voltages inside a human would be on the order of 0.010 V/m (10 milliVolts) or less. This is much less than the typical voltages generated within the heart and brain which are from 1 – 10 V/m. Furthermore, the endogenous DC fields generated by the flow of ionic current through cells in the body is on the order of 10 – 100 V/m.

I find it hard to believe that a 10 milliVolt field could substantially perturb a system that routinely generates voltages that are 100 – 10000 times greater. Again, this is within a 1 KILOVOLT / per meter electric field which is much higher than you will see anywhere except inside of an industrial electric room or underneath a high tension line.

The electric field generated by the alleged dirty electricity has a greatly diminished amplitude – probably no more than 10 V/m. Divide that by the same attenuating factor of 10^6 (1 million) and you wind up with induced voltages of 0.0001 V/m which is in the microvolt range.  (100 microVolts) This is even more unlikely to cause any noticeable change inside the human body given the fact that the resting membrane potentials of most human cells range range from -40 to -80 millivolts which is at least 400 X to 800 X greater than the 100 microVolts cited. The negative numbers for the internal voltages of cells are stated as such because you are measuring the voltage with respect to the ECF (Extracellular Fluid) surrounding cells which is used as a ground reference.

And again, this is in a 1 kiloVolt / meter field. What you encounter routinely inside of a home is at most 100 V / meter or so, and more typically 1-10  V /m. So divide that 100 microVolts by 10, 100, and 1000 and you wind up with 0.1 – 10 uV (microVolts) being induced in the body which is hardly a drop in the bucket as far as electrochemical signaling in the body is concerned. There is probably a greater pathological effect from listening to Barney The Dinosaur than this minuscule amount of “dirty energy” injected into a human host.

Even if there are minor effects, the body is an organism with a renowned impetus and ability to maintain equilibrium under a range of conditions. This is why we usually don’t perish as soon as something affects our blood pH, body temperature, glucose levels, etc. Our bodies are constantly keeping up with an influx of stress, bad food, bacteria, substandard air and food quality and a plethora of other threats and chemical / genotoxic insults. We only become ill when a substantial imbalance develops that our system cannot compensate adequately for.

In addition, many of us already have DSL for high speed Internet access which runs routinely pulses high frequency signals through telephone lines and yet I never hear any fuss or concern expressed over this medium. Granted, the practice of using twisted pair conductors does prevent this “noise” from radiating any appreciable distance, but it is in the high frequency ranges that many claim are damaging when present on a power line. I find it interesting that certain so called “experts” seem to cherry pick what type of noise is clean or dirty.

At any rate, I do not claim that electromagnetic energy is COMPLETELY harmless, only that it is better to calmly examine actual data and put said risks into proper perspective.

But whether you are interested in “cleaning up dirty electricity” for either the benefit of your electronic equipment or because you are concerned about the safety risks to your health – I would strongly advise that you read this article concerning devices that claim to eliminate electrical noise / health risks and what the real effects are:

EMF – Harmonics, and questionable means to “clean” them

This is your friendly Dallas / Fort Worth / Houston / Austin EMF Testing Inspector signing off for now.

Stay Well!


Typical EMF & RF Sources in the Home

Homes have several potential sources for high EMF and RF sources including:

  •  External high voltage power lines (both primary and secondary feeders) which can produce elevated levels – particularly in densely populated urban areas / cities such as Dallas, Fort Worth, Houston, Austin, etc. or in homes near utility easements
  •  The main 120/240 volt feed entering the home through the power drop
  •  Breaker boxes
  •  Fluorescent lights (some also have an RF component as well which can cause equipment interference)
  •  High output halogen lamp banks such as those used in track lighting (uses a lot of current)
  •  Appliances with motors or heating elements (washers, dryers, refrigerators, etc.)
  •  AC Adapters
  •  Wiring Errors
  •  Outside Air Conditioning Compressors and Pool Equipment
  •  Wireless Routers, Cell Phones, Bluetooth and Cordless Phones (radio frequency only)
  •  Smart Meters (but fairly low level)
  •  Dimmers (though the range tends to be very short, but I have seen them wreak havoc with sensitive electronic equipment)

The focus should primarily be in areas exposed to EMFs where occupants spend 90 % of their time or greater – this sample schematic gives examples.

Focusing on areas where people spend 90% of their time

Focusing on areas where people spend 90% of their time

LFE means Low Frequency Electromagnetic – this is the typical ELF (Extremely Low Frequency) band for 60 Hz AC power

Typical Low Frequency 60 Hz EMF

Typical Low Frequency 60 Hz EMF Sources

Higher frequency RF sources in the home including wireless routers, printers, laptops and other portable cell phone / tablet devices – DECT means Digital Enhanced Cordless Telecommunications

Typical High Frequency RF Sources in the Home

Typical High Frequency RF Sources in the Home

EMF & Powerlines – Are the Health and Safety Effects Worth it? A Dallas Inspector’s View

High voltage powerlines, Smart Meters, the cell phone pressed up next to your head… are the effects on your body worth the risk?

I am a professional EMF inspector who has been practicing here in the Dallas – Fort Worth area for nearly the past 15 years and I have some informed thoughts on this subject based on my extensive education, experience and research into this controversial subject.

But before you click away in either fear or skepticism, let me reassure you that my viewpoint on this subject is actually very moderate. I do not demonize the utility companies or the electrification of our society, but neither do I ignore the potential health concerns that many share or the studies that have suggested some possible risks.

North American Life Expectancy Chart Over 100 Years

North American Life Expectancy Chart Over 110 Years

I look at both the pros and the cons of having power on tap in a wide variety of locales. Think back to the turn of the century, (the other century) say about 1900. The average life expectancy of a North American was roughly 47 years – give or take depending on what region of the country, gender, etc.  And in the 130 odd years since Edison switched his first electrical power plant on, the average life expectancy here in the USA has increased by at least 31 years to the age of 78 while the fields we are exposed to daily have gone up by several orders of magnitude. (I recently saw the figure of 16000 times greater)

So if power lines were so harmful, why are we living longer even while our society has become even more electrified?

Obviously, they are not immediately lethal unless you make direct contact in an unfortunate manner, nor are any consistent effects observed at moderate levels. However, I am not saying there is no effect whatsoever. But I feel that many advocates of a “gauss-less” life are missing all of the benefits that electricity brings.

Illuminated roads and buildings at night, hospitals and homes that do not operate by the far more dangerous gas lighting, air conditioning in the sweltering summer, emergency help just 3 digits away…  all of these modern conveniences converge to turn survival from a struggle into something that we can do without much thought.

So why do I perform EMF inspections? Because despite these advantages, people have legitimate concerns and have a right to make informed choices about where they work, live, sleep and spend their leisure time.

I am not a fearmonger, and my goal is to translate the latest findings of science and health research into an understandable context that makes living near powerlines and cell towers less of an unknown.

More to come soon, but for additional information or a survey, feel free to browse the following informative website: